Страницы сайта
Текущий курс
Участники
Общее
Тема 1
Тема 2
Тема 3
Тема 4
Тема 5
Тема 6
Тема 7
Тема 8
Тема 9
Тема 10
Тема 11
Тема 12
Тема 13
Тема 14
Тема 15
Тема 16
Тема 17
Тема 18
Тема 19
Тема 20
Тема 21
Тема 22
Тема 23
Тема 24
Тема 25
Тема 26
Тема 27
Тема 28
Тема 29
Тема 30
Тема 31
Тема 32
Тема 33
Тема 34
Тема 35
Урок 16. Комментарий для учителя к уроку «Одинаковые цепочки. Разные цепочки»
Урок 16. «Одинаковые цепочки. Разные цепочки»
Новые ключевые выражения: одинаковые цепочки, разные цепочки.
Одинаковость цепочек
Для цепочек, как и для других объектов математической информатики, одинаковость (равенство, тождество) - важнейшее понятие. Ясно, например, что два числа - одно, записанное мелкими цифрами, а другое - крупными - одинаковые:
987
987
Первое время, однако, мы будем стараться использовать цифры и буквы одного и того же размера и начертания, а вот располагаться на листе бумаги в виде цепочки они будут по-разному. Цепочки, в которых одни и те же символы идут в одном и том же порядке, для нас одинаковы.
Как уже говорилось, мы используем выражения одинаковые и такая же как синонимы (обозначающие одно и то же понятие) и употребляем тот или другой термин, как нам удобнее. Термин разные означает в точности неодинаковые. Мы, однако, не считаем, что у ребенка, работающего с нашим учебником, сформировалось ясное общее представление об отрицании свойств и понятий. Поэтому для понятия разные тоже приводится достаточное количество примеров. В первом примере разных цепочек цепочки выглядят совсем не похоже. Во втором примере цепочки состоят из одних и тех же бусин, но порядок бусин разный. В третьем примере цепочки отличаются направлением (начало и конец поменялись местами).
Способ определения понятий в нашем курсе
Как и раньше в нашем учебнике, приведенное выше объяснение одинаковости цепочек вряд ли может считаться формальным определением. (Фактически оно просто заменяет понятие одинаковость цепочек понятием одинаковый порядок символов.) Для вас это пояснение может оказаться полезным, для ребенка вряд ли. Похожая ситуация возникает во многих курсах и учебниках, где ребенку предлагается выучить наизусть определение, мало что добавляющее к демонстрации учителем набора примеров и не способствующее пониманию материала. Вы уже, наверное, привыкли, что наш подход состоит в перемещении центра тяжести с недостаточно информативных определений на примеры.
При этом мы используем естественную способность ребенка к классификации. Например, никто не пытается дать ребенку определение того, что такое собака, но он легко в трехлетнем возрасте отличит собаку от кошки. Так же и в нашей ситуации: понятиеодинаковость цепочек формируется на примерах, в том числе и на примерах разных цепочек. Конечно, мы следим за тем, чтобы наши понятия и формирующие их листы определений сводили до минимума возможность неоднозначного (двусмысленного) понимания. Совсем исключить потенциальную возможность двусмысленности, если даешь определение на примерах, нельзя. Поэтому, обсуждая ту или иную задачу с детьми, вы можете прибегнуть к словесным формулировкам тех или иных понятий. Важно только, чтобы эти словесные формулировки воспринимались как вспомогательные и ни в коем случае не заучивались наизусть.
Решение задач из учебника
Задача 84. Существуют различные способы решения этой задачи. Например, можно строить две цепочки одновременно, двигаясь от одной пары одинаковых животных к другой. Если ученик сильный, попросите его сделать так, чтобы цепочки не пересекали друг друга и самих себя. Лучше, если вначале дети будут работать карандашом.
Задача 85. В данной задаче дети применяют уже известное им понятие такая же для цепочек. Тем, кто не может найти нужную цепочку при простом просматривании, нужно посоветовать полный перебор всех цепочек (с использованием пометок). Однако, здесь полный перебор не обязателен. Отмечаем, что в цепочке-образце нет желтой бусины, значит, все цепочки с желтыми бусинами можно сразу вычеркнуть. После этого остается только 5 цепочек, которые нужно сравнить с образцом более тщательно.
Задача 86. На простом примере ребята имеют возможность понять разницу между построением объекта по инструкции и построением объекта по описанию. Работая по инструкции, мы выполняем действия в строго определенном порядке, а пытаясь построить объект по описанию, мы определяем порядок сами, исходя из того, какие пункты описания можно выполнить однозначно (эти пункты мы учитываем в первую очередь), чтобы в дальнейшем выполнение одного пункта описания не противоречило другому. Например, если в данной задаче учащийся будет работать с утверждениями по порядку, как с инструкцией, то в одной из пустых бусин он поставит Т, затем в другой - М и т. д., и решение, возможно, нельзя будет закончить. Здесь следует сначала выполнить пункты, определяющие положение букв однозначно, а затем вернуться к первым двум. Возможно, кто-то из ребят сразу угадает слово КОМПЬЮТЕР. Это неплохо, но необходимо попросить такого ученика честно проверить истинность всех утверждений.
Задача 87. Необязательная. В отличие от задачи 84 здесь вначале необходимо выбрать те фигурки, которые будут участвовать в построении цепочек. На листе вырезания находится ровно 8 пар одинаковых фигурок.
Задача 88. Похожа на задачу 84, только фигурок здесь больше. Поэтому в ней есть указание для ребят, которые затрудняются проводить построение цепочек в уме. Существенной помощью для них будет возможность вырезать данные фигурки, рассортировать одинаковые, сложить две одинаковые цепочки на столе. Однако не стоит заставлять всех делать это в обязательном порядке, ведь это не единственный способ решения. В частности, можно воспользоваться тем же способом, который мы описывали в комментарии к задаче 84.
Компьютерный урок «Одинаковые цепочки. Разные цепочки»
Решение задач
Задача 124. В этой задаче выражение «такая же» впервые употребляется по отношению к цепочке. Вообще выражения «одинаковые» и «такая же» используются в курсе как синонимы (обозначающие одно и то же понятие) и употребляются как удобно из языковых соображений. Например, данную задачу невозможно грамотно сформулировать по-русски, используя понятие «одинаковые». В данной задаче некоторую сложность представляет то, что все цепочки очень похожи. Пожалуй, сразу можно отбросить как неподходящую лишь цепочку, состоящую из трех бусин. Все остальные цепочки построены из одного и того же набора бусин, поэтому их придется проверять более внимательно. Если у кого-то из ребят с этой задачей возникнут проблемы, посоветуйте ему полный перебор всех цепочек с обязательным использованием пометок для цепочек, которые уже просмотрены.
Задача 125. В этой задаче цепочки отличаются гораздо больше, чем в предыдущей. Поэтому их удобно делить на группы по наличию или отсутствию некоторой бусины, по ходу отбрасывая неподходящие. Например, фиолетовая бусина есть лишь в одной цепочке, поэтому эту цепочку можно сразу отбросить. Аналогично можно отбросить цепочку с зеленой круглой бусиной и цепочку с зеленой квадратной бусиной. Оставшиеся цепочки делятся на две пары по наличию/отсутствию голубых бусин. В этих парах цепочки придется сравнить более внимательно, то есть поэлементно.
Задача 126. Здесь, как и во многих других задачах на одинаковые цепочки удобней всего двигаться одновременно по всем цепочкам, сравнивая бусины на соответствующих местах и делая их одинаковыми. Рассмотрим первые бусины пяти цепочек. Одна из них раскрашена в голубой цвет. Чтобы сделать все эти цепочки одинаковыми, нужно и другие четыре бусины также раскрасить в голубой цвет. Рассуждая так, мы двигаемся по цепочкам, пока не доходим до конца. Если у слабого ребенка с этой задачей возникнут проблемы, раскрасьте, рассуждая вместе с ним, первые две бусины всех цепочек, остальные пусть раскрасит сам.
Задача 127. Наличие инструмента «лапка» делает удобным проведение многих проб с фигурками в цепочках. Поэтому постарайтесь не давать детям никаких пояснений, пусть экспериментируют. Проще всего в таких задачах, конечно, строить цепочки одновременно, выкладывая на одинаковые места цепочек одинаковые фигурки, но у детей могут возникнуть и другие стратегии. В любом случае ошибку увидеть здесь легко, ведь одинаковые фигурки в цепочках в данном случае должны оказаться друг под другом.
Задача 128. Эта задача требует некоторой внимательности. Как видите, цепочки нарисованы так, что их направления противоположны. Тех детей, которые это не заметят и допустят ошибку, попросите пометить галочкой начала и первые бусины каждой цепочки. После этого попросите ребенка сделать формальную проверку – сравнить попарно фигурки, стоящие на одинаковых местах, двигаясь от начала к концу цепочек. Многие увидят свою ошибку уже на первом шаге.
Задача 129. Для кого-то эта задача покажется сложной, ведь все бусины – одинаковые. Это значит, что нельзя сделать цепочки разными ни за счет разных бусин, ни за счет разного порядка бусин. Остается лишь одно – построить цепочки из разного числа бусин. Если ребенок никак до этого не может догадаться, посоветуйте ему воспользоваться методом проб и ошибок. Обсудите вместе с ним, в чем здесь будут заключаться разные варианты, учитывая то, что все бусины одинаковые.
Задача 130. Задача на повторение сравнения фигурок наложением. Здесь дети сравнивают фигурки только по длине, поэтому полного совпадения при наложении не требуется, требуется только совпадение по верхнему и нижнему краю фигурок. Как обычно в таких задачах «лапка» запрограммирована таким образом, чтобы при наложении фигурки правильно совмещались по некоторым точкам или линиям. Поскольку фигурки сравниваются по длине, совмещение происходит по нижнему краю фигурок.
Задача 131. Необязательная. Эта задача из разряда сложных, поскольку фигурок здесь довольно много. Кроме того, клеток в фигурках тоже много и все раскрашенные клетки одного цвета. Для начала стоит посчитать число раскрашенных квадратиков во всех фигурках. Оказывается, что в одной фигурке раскрашенных квадратиков четыре, а во всех остальных – пять. Значит, мы уже нашли фигурку, в которой будем раскрашивать квадратик. Теперь осталось сравнить ее со всем остальными фигурками и понять, какой квадратик нужно раскрасить.